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Abstract: Breast cancer is one of the most commonly diagnosed malignancies in women. Along with
increasing demands for breast reconstruction, the attention given to the psychological and aesthetic
benefits of breast reconstruction has also increased. As breast reconstruction and augmentation
demands increase, biomaterials for breast reconstruction are being developed, and the related
industry is growing quickly worldwide. Among the various biomaterials used for breast enlargement,
breast implants have undergone a remarkable evolution since the 1960s. Despite unsatisfactory
results and unexpected complications, research dedicated to achieving an ideal breast implant has
progressed. In accordance with attention to tissue engineering, a three-dimensional (3D) bioprinting
technique for breast tissue regeneration has emerged to overcome the current limitations of breast
biomaterials. Along with solid implants, injectable liquid-type fillers are also part of ongoing studies.
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1. Introduction

Breast cancer is one of the most commonly diagnosed malignancies in women. In 2018,
approximately two million women globally were diagnosed with breast cancer, accounting
for almost one in four cancer cases in women [1]. The number of newly diagnosed breast
cancer cases has more than doubled, with the portion of cases seen in younger women
increasing [2]. Although the five-year survival rate for breast cancer has improved, the
disease burden remains high in most countries [3,4]. Therefore, demands for breast recon-
struction exist, and the recent increase in the popularity of social media has made evident
the attention given to body image. The numbers of bilateral mastectomy and immediate
reconstruction procedures have increased, and the psychological and aesthetic benefits
of breast reconstruction have also increased. As breast reconstruction and augmentation
demands increase, biomaterials for use in breast reconstruction are being developed, and
the related industry is growing quickly worldwide.

Among the various biomaterials used for breast enlargement, breast implants have
undergone a remarkable evolution since the 1960s. Despite unsatisfactory results and
unexpected complications, research dedicated to achieving an ideal breast implant has
progressed. In accordance with tissue engineering, a 3D bioprinting technique for breast
tissue regeneration has emerged to overcome the current limitations of breast biomaterials.
Along with solid implants, injectable liquid-type fillers are also part of ongoing studies.

2. Breast Implant
2.1. Introduction of Saline Implant

The first use of saline-filled breast implants was reported in 1965, and less than a
decade later clinical trials were performed to evaluate this implant [5–7]. The biggest
advantage of the saline implant for augmentation was that it could be inserted through
a small incision because the implant could be inserted before inflation. After the implant
was inserted, inflation was performed with liquid saline.
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However, the saline implant had several limitations [8]. First, the early saline-filled
implant had a high deflation rate due to underdeveloped shells and valves. Secondly,
the mechanism of post-filling had some pitfalls. Underfilling with saline resulted in
increased deflation rates and visible surface wrinkles, and overfilling caused unexpected
shape deformities and unnatural firmness. Most importantly, the feel of the implant on
palpation after insertion into the breast was not similar to natural breast tissue. These critical
limitations of saline implants increased the demand for a more natural and consistent
implant material.

2.2. History of Silicone Gel Implant

The emergence of the silicone gel implant caused a revolution in breast augmentation.
The silicone gel implant was first introduced by Cronin in 1962 and was manufactured
by the Dow Corning Corporation between 1963 and 1972 [9]. The implant consisted of a
thick, smooth silicone elastomer as two separate envelopes connected along the periphery.
The shell (the outer cover of the implant) was filled with a moderately viscous gel, and
Dacron patches were attached at the posterior surface of the implant to avoid rotation and
induce the proper positioning of the device (Figure 1). However, some women developed
very firm breasts less than one year after breast augmentation. As the principle of capsular
contracture (the constriction of a capsule of scar tissue around the implant) was not well
understood at the time, this breast firmness was attributed to the firmness of the implant.
As a result, a new generation of softer breast implants was demanded.
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Figure 1. The Cronin–Gerow silicone implant had anatomic shape, smooth surface, and posteriorly
placed Dacron patches to maintain position. Based on [9].

The second-generation silicone gel implant was introduced in 1972 and used for a
decade. A thinner shell without Dacron patches and a less viscous gel were used to avoid
capsular contracture to overcome previous drawbacks. The gel consisted of 20% highly
crosslinked silicone and 80% low molecular weight chains [10]. However, the implants
tended to rupture, leading to silicone gel spillage into the periprosthetic space. The oily and
sticky component was found within the peri-implant capsule of both ruptured implants
and even visually intact implants [11–18].

The third generation of silicone gel implant was introduced with a stronger and thicker
shell, as the main goal was to eliminate silicone gel spillage and avoid implant rupture.
The newly developed implant had two layers of silicone elastomer and a thin (0.01 mm)
layer of fluorosilicone placed between them. Despite a lower capsular contracture rate,
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there were social concerns about the safety of the silicone gel prosthesis for breasts, given
their high complication rates and uncertain effect on soft tissue [19–21]. As a result, the
Food and Drug Administration (FDA) abandoned the use of third-generation implants in
the United States [22–27].

Fourth-generation and fifth-generation silicone gel implants were manufactured
strictly by the American Society for Testing Methodology [28]. Manufacturers provided im-
proved quality control of the breast implant, and various shapes and surface textures were
produced. At the same time, the concept of an anatomically shaped implant, composed of
a more cohesive gel, was introduced [29–31].

2.3. Modification of Implant Surface Topography

A silicone gel implant with a smooth surface was the earliest form and is still being
used today. However, the frequency of its use is decreasing because of the relatively high
capsular contracture rate. According to previous studies, the rate of capsular contracture is
higher for smooth implants than for textured surface implants [32–35].

Manufacturers presented breast implants with a textured surface to overcome the
high capsular contracture rate of implants with a smooth surface [36,37]. Initial textured
implants were made with a polyurethane coating, developed in the 1970s [38]. Studies
indicated that a polyurethane foam-coated silicone gel implant might reduce capsular
contracture [39,40]. After capsular formation around the implant, the 1.5 to 2.0 mm-thick
polyurethane coating disintegrated, and it was hypothesized that the tightening that
occurred would prevent the alignment of myofibroblasts and eventually interrupt the
capsular contracture process [41]. The use of polyurethane implants has spread worldwide
since they were introduced. However, as polyurethane foam degraded, it was found
to release carcinogenic 2,4-toluene diamine (TDA). This subsequently led to complete
prohibition by the FDA in 1991, and this implant was removed from the market. Later, it
was revealed that the small amount of 2,4-TDA released would not significantly increase
risk [42]. The surgical use of the polyurethane-coated implant continued in countries other
than the US. The safety and effectiveness of reducing the capsular contracture rate have
been reported on by multiple authors [43–45].

As polyurethane foam-covered silicone gel implants are not as biocompatible as
silicone, textured implants have been introduced to inhibit capsule formation. Through the
“adhesive effect” of the pores on the surface of the textured implant, the stabilization and
fixing of the implant in the breast pocket could be achieved. In addition, a textured silicone
implant causes less fibrosis, and, as a result, the frequency of capsular contracture is lower
than that of a smooth implant [35,46,47]. Still, many textured implants are associated with
a significant rate of capsular contracture, and texturization during manufacture has been
associated with a collection of serous fluid that develops under the surface in the body
(seroma) and double capsule formation.

For the next generation of implants, micro- or nanotextured implants were developed
by controlling the roughness of the existing surface. The rough surface may induce bacterial
colonization by providing space for bacteria and more points of direct contact between the
pathogenic cell and the implant surface (Figure 2) [48]. By avoiding aggressive texturing
with the projection of sugar crystals and salt onto the implant, reduced roughness has pro-
moted a more natural interaction between the implant and soft tissue, potentially reducing
inflammation. For example, Sientra’s Silimed has a web-like organization at the implant’s
surface, and Allergan Biocell has a salt-loss pattern on the surface. However, the microtex-
tured implant, such as Mentor Siltex, is manufactured using a pressure imprint-stamping
technique (Figure 3A–C) [49]. One of the nanotextured implants, Motiva Silksurface, is
manufactured using negative imprinting with three-dimensional (3D) technology. It op-
timizes biocompatibility by structuring a uniform topography using 3D imprinting on
polydimethylsiloxane (PDMS) material to build the outer shell (Figure 3D) [50]. These
changes to the surface have minimized inflammation and, in turn, reduced breast implant-
related complications such as capsular contracture and late seromas. Moreover, a higher
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number of contact points could prevent the aggregation of fibroblasts, which might lead to
capsular contracture.
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Figure 3. Scanning electron microscopy (SEM) images of implant surface. (A) Sientra Silimed foam
textured implant surface (66× magnification); (B) Allergan Biocell salt-loss textured implant surface
(104× magnification); (C) Mentor Siltex imprinted textured implant surface (100× magnification);
(D) Motiva SilkSurface textured implant surface (300 µm scale). Based on [49,50].

In addition to surface structural modification, modifications using biomaterials are also
in progress to minimize capsular contracture. In the porcine model, a 2-methacryloyloxyethyl
phosphorylcholine (MPC)-based polymer was grafted on a silicone breast implant and
inserted under the skin [51]. MPC-based polymer is known to reduce protein adsorption
and inhibit cell adhesion. The results of the study showed a reduction in inflammatory
cell recruitment and myoblast markers; consequently, a reduced capsular thickness was
observed. Moreover, there are several studies on antibacterial components on breast
implant surfaces to lower the incidence of capsular contracture [52,53].

2.4. Modification of Filling Material in Breast Implant

Silicone has been used as a filler since the first implant was introduced in the 1960s.
Since the initial development, multiple modifications of filler characteristics have been
made to achieve a more durable, consistent, and natural shape. In the past, the property of
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the silicone filler in breast implants had been thought to be an important factor affecting the
capsular contracture rate [54,55]. However, by the evolution of fourth-generation implants,
better safety had been explored, and long-term outcomes had been described [56,57].

Silicone is a mixture of semi-inorganic polymeric molecules composed of different
length chains of polydimethylsiloxane monomers [30]. The property of the silicone can be
varied by the polymer chain length and degree of crosslinking between polymer chains [58].
For example, in liquid silicone the length of the polymer chain is shorter on average, and
the degree of crosslinking is minimal. However, in silicone gel, the length of the polymer
chain and the degree of crosslinking is increased to maintain the implant’s shape.

The cohesiveness of the breast implant varies by manufacturer. According to a study
by Maxwell et al., the Allergan 410 implant had the highest cohesivity when compared with
the Mentor CPG implant [56]. Stevens et al. reported that Sientra’s form-stable implant had
the least cohesiveness when compared to the Allergan 410 and Mentor CPG implants [59].
However, as there is no standardized grading system for implant cohesiveness, accurate
comparison between various implants is difficult. Moreover, as cohesivity is not the only
factor that affects implant stiffness, it is not appropriate to interpret high cohesiveness of
the implant as high stiffness.

2.5. Breast Implant Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) Issues

As the evolution of the silicone gel implant proceeded, breast implant-associated
anaplastic large cell lymphoma (BIA-ALCL) became a significant public concern of women
with textured implants. The rising incidence of BIA-ALCL has increased awareness of
the use of textured implants. The FDA has received approximately 359 adverse reports of
ALCL in women with breast implants, which were reported to the Manufacturer and User
Facility Device Experience (MAUDE) database as of February 2017. According to a previous
study, BIA-ALCL only occurs in association with textured implants [60]. According to the
study carried out by the US FDA, the disease risk of BIA-ALCL was 1:2943 with the Biocell
textured implant [61]. The Australian Therapeutic Goods Administration reported that
the disease risks were 1:3705 for the Biocell implant, 1:3894 for the Silimed polyurethane
implant, and 1:60,631 for the Mentor Siltex implant [62].

In 2019, the FDA issued a recall of the Allergan Biocell textured breast implant, which
is classified as a macrotextured implant [63,64]. However, the FDA did not recommend
removing or replacing textured implants in asymptomatic patients [65]. Instead, all patients
with breast implants were notified of the risk for developing BIA-ALCL, and patients with
textured implants were counseled about risk management options. Two thirds of BIA-
ALCL patients present with a malignant effusion between the fibrous capsule and the
implant. The other one third of patients present with a palpable mass, which may indicate
a more aggressive clinical course [66]. The National Comprehensive Cancer Network
(NCCN) has suggested several guidelines for management [67].

If BIA-ALCL is localized to the capsule only, it may be treated with surgery; however,
in advanced cases, including lymph node involvement, surgery and chemotherapy or
radiotherapy are indicated for treatment. To reduce the risk of developing BIA-ALCL,
removing textured devices with subsequent closure, exchange for a smooth implant, or
conversion to autologous reconstruction could be options [68]. Consequently, in clinics
there is a tendency worldwide for surgeons and patients to alter their implant choices from
textured to smooth-surface implants [69].

3. Scaffold Guided Breast Tissue Engineering
3.1. Three Dimensional (3D) Bioprinting Technique for Breast Tissue Regeneration

Three dimensional (3D) bioprinting is a valuable tool for regenerative medicine and
tissue engineering. It involves fabricating complex bioactive structures with cell-laden
bioink under the guidance of computer-aided design (CAD) in a layer-by-layer fashion
(Figure 4) [70]. The most frequently used 3D printing techniques for breast tissue regenera-
tion are inkjet printing, extrusion-based bioprinting (EBB), light-mediated stereolithogra-



Appl. Sci. 2021, 11, 7493 6 of 13

phy (SLA), and digital light processing (DLP). Inkjet printing is the most commonly used
bioprinting method which provides cell viability via thermal or piezoelectric processes [71].
EBB is capable of handling bioink of a high viscosity using a fluid-dispensing system,
which has been mostly utilized in the bioprinting of adipose tissue [72].
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Several studies have investigated structural concepts to obtain the most suitable
3D model for breast tissue engineering. Mohseni et al. researched the ideal additive
biomanufacturing of scaffold model for breast reconstruction using a 3D bioprinting
technique [73]. In the study, the model was focused on two independent structures. The
external structure was designed for the integrity of the scaffold and minimized direct stress
transfer to newly formed tissue; the internal structure was designed as tissue guidance that
provides an appropriate microenvironment in connection with native tissue by adjusting
pore size and channel structure.

3.2. Components of Bioink for Breast Tissue

Bioink is composed of biomolecules, scaffold materials, and encapsulated cells. Bioink
maintains cell viability by protecting encapsulated cells during the printing process and pro-
vides a proper microenvironment for cell adhesion, proliferation, and differentiation [74].
The appropriate combination of components provides a mechanical and biological envi-
ronment for successful tissue engineering. The components of biomaterials (bioink) are
divided into two categories: nature-derived biomaterials and synthetic biomaterials.

3.2.1. Nature Derived Biomaterials

Nature-derived biomaterials that can be used for breast tissue regeneration consist
of collagen, alginate, chitosan, hyaluronic acid (HA), and decellularized extracellular
matrix (dECM) [75]. Alginate and chitosan provide an appropriate microenvironment
for adipocytes, including adipose-derived stem cells (ADSCs) by means of cell viability
and proliferation, leading to adipogenic differentiation [76,77]. DECM is a hydrophilic
matrix extracted from tissues via a decellularization process. The components of dECM
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contain glycosaminoglycans, proteins, polysaccharides, fibronectin, and collagen type
I and II. These components provide a biomimetic microenvironment for cell adhesion,
proliferation, and differentiation [78]. Although the dECM of adipose tissue has been shown
to promote the formation of adipose tissue of the breast, there remains the limitation that the
degradation rate of dECM exceeds the rate of new ECM formation [79–81]. Nature-derived
components have common limitations such as instability and difficulty in modification,
but they provide a biological and chemical microenvironment.

3.2.2. Synthetic Components

Synthetic biomaterials have the capacity to be modified in ways that provide mechani-
cal strength, biodegradability, and cell adhesion ability. Some synthetic components have
the property of nature-derived biomaterials that can be included as bioink and some other
components act as mechanical support of the 3D bioprinting structure.

The most frequently adopted component is poly e-caprolactone (PCL), which provides
mechanical strength with sufficient biocompatibility as a characteristic of the additive
supportive structure [82]. In a rodent model study, ADSCs seeded to a PCL scaffold
increased angiogenesis and minimized the host inflammatory response, resulting in in-
creased tissue growth and biostructure integration [83]. In another study, a 3D-printed
PCL device was attached to the surface of a silicone implant and applied to a rodent
model to enhance adipogenic differentiation of ADSCs without foreign body reaction [84].
PCL is often researched as a copolymer with other molecular materials. In one study, a
copolymer of e-caprolactone and p-dioxanone supported proliferation and differentia-
tion of ADSCs, which is suitable for tissue regeneration [85]. In other study, copolymer
of polycaprolactone-co-poly-D,L-lactic acid (PCLLA) was evaluated as a biomaterial for
breast tissue reengineering [86]. Although the initial mechanical property of PCLLA has
shown potential as an additive during manufacturing, it has limitations in thermal stability
and degradation rates [87].

The exact utility of synthetic biomaterials is uncertain, and research is in progress.
However, as shown clinical success in bone tissue engineering, they can be regarded as
potentially important 3D bioprinting tools for breast tissue regeneration if harmonized
with biologic biomaterials.

3.3. Immunomodulation of 3D Bioprinted Scaffold

Recent advances in 3D-bioprinted silicone implants have proven highly accurate
anatomical form for individuals. However, immune reaction-derived complications such
as capsular contraction and granuloma formation are still unsolved issues. To overcome
this immunologic problem, several immunomodulating trials of the 3D scaffold have been
attempted. Indolfi et al. applicated matrix-embedded endothelial cells (MEECs) on 3D
porous collagen scaffold. In the study, the decreased recruitment of monocytes and the im-
munosuppressive properties of the MEECs were proven [88]. In another study performed
by Barthes et al., coating cytokines composed of interleukin-10 and prostaglandin-E2 on
3D implant, diminished thickness of the inflammatory tissue and the intensity of acute
and chronic inflammation were observed. Moreover, overall fibroblastic reaction and the
secretion of pro-inflammatory cytokines also have decreased, resulting in lower potential
complication rates [89]. Through modulating such microenvironments of implantable 3D
biomaterials based on microscale coating to deliver cytokines, reduced adverse immune
reactions and promoted tissue regeneration will be accomplished. To sum up, immunomod-
ulation by 3D scaffold cannot be overlooked for ultimate surgical outcome and should be
taken into consideration.

4. Breast Fillers

The augmentation of the breast while avoiding burdensome surgery could be an ideal
option for reconstructive or aesthetic purposes. For this reason, multiple filler materials
for breast augmentation have been introduced for minimally invasive procedures. Breast
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augmentation using various injectable materials, including paraffin, mineral oil, liquid
silicone, and polyacrylamide hydrogel has been performed for several decades. However,
all of these fillers have caused the development of severe complications such as infection,
unexpected migration, nodular formation, and pain. Due to its simplicity of use, many
local clinics worldwide still use filler materials for breast augmentation even though
some countries have banned the use of such fillers. The most commonly used fillers are
hydrophilic gel and hyaluronic acid.

4.1. Hydrophilic Gel Fillers

Aquafilling (Biomedica, spol, s.r.o., Czech Republic) is a hydrophilic gel composed
of 98% sodium chloride solution (0.9%) and 2% polyimide. It was developed for facial
contouring in the Czech Republic in 2005 [90]. Along with Aquafilling, there are several
similar products that have been sold under the name of Los Deline (Bio Trh, s.r.o., Pargue,
Czech Republic) and Aqualift (National Medical Technologies Center Co., Ltd., Kyiv city,
Ukraine), which is similar to a formulation that was first copyrighted in 2013 and then
renamed to Activegel in 2015. Shin et al. reported Aquafilling/Los Deline injections to
correct mild breast deformity after breast augmentation with silicone implants. However,
its safety is still controversial. There have been multiple reports of complications such as
breast pain, gel migration, inflammation, infection, and nodular lesions [91–95]. These com-
plications may be derived from the copolyimide. The Korean Academic Society of Aesthetic
and Reconstructive Breast Surgery stated in 2016 that the copolyimide in Aquafilling/Los
Deline is poly (acrylamide-co-N, N’-methylene-bisacrylamide), meaning copolyimide has
the same composition as polyacrylamide gel (PAAG) fillers, which have been reported
to cause serious adverse complications when used for breast augmentation (localized
lump, deformity, infection, gel migration, inability to breastfeed) [96]. The complications of
PAAG has been mentioned in previous reports. Unokovych et al. reported 45 Ukrainian
women who underwent surgery from 1998 to 2009 to treat PAAG complications, including
pain, breast hardening, deformity, lump, fistula. The average duration from injection to
developing the complication was 6.1 years [97]. Nomoto et al. reported that 29 patients
who received copolymer-filler injection presented with concerns (deformity, gel migration,
infection, induration, pain, and fistula) [98]. The mean duration between injection and
consultation was 1.8 years. These findings indicate copolyimide filler injections for breast
augmentation are associated with similar complications as the PAAG filler injection. In this
study, nuclear magnetic resonance (NMR) analysis indicated that copolyimide and PAAG
fillers bore all of the characteristic peaks of PAAG, which was previously mentioned by the
Korean Society.

4.2. Hyaluronic Acid Fillers

Macrolane (Qmed/Galderma Co) is a NASHA-based (stabilized hyaluronic acid of
non-animal origin) medical implant that has been investigated in breast augmentation
and buttock augmentation. It plays a role in delivering adipocyte precursor cells and
supports adipose tissue formation [99]. Hyaluronic acid has several benefits, such as
being noninvasive and reversible, with rapid results. For its simplicity, it attracted much
media attention, and many women have undergone this procedure. Untrained aesthetic
physicians have spread the HA in the breast instead of placing it deep into the gland, which
resulted in mammography errors in the surrounding glandular tissue [100]. Hyaluronic
acid filler has the characteristic of high crosslinking, which extends its duration in tissues
before its absorption [101]. The degradation of the product is isovolemic, and as the product
degrades the remaining hyaluronic acid binds additional water to maintain a constant
overall volume [102]. Owing to these characteristics, the duration of the product is limited,
and as Macrolane degrades, it can diffuse into the gland and more likely exit the breasts
through the lymphatic system [103]. Similar to a previous report, after Macrolane injection
into the breast, asymmetrical volume loss with lump formation was noticed. Furthermore,
three years after surgery, right axilla lymph node enlargement was noticed, and biopsy
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showed a high concentration of hyaluronic acid (Figure 5) [104]. Macrolane was finally
withdrawn from the market in 2017. After scientific studies of safety and overcoming
the cost inefficacy, new hyaluronic fillers may emerge for volume restoration procedures,
including breast augmentation.
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4.3. Future Perspectives for Breast Fillers

Injectable fillers are widely used in soft tissue augmentation and reconstruction. In-
jectable materials can be classified as natural or synthetic biomaterials. Natural fillers have
the advantage of biocompatibility and degradation over time. However, natural fillers have
limitations, such as high absorption rates and a relatively short-lasting filling effect. On the
other hand, synthetic fillers tend to have a low biocompatibility with various mechanical
strengths. Appropriate filler material could be developed, and current limitations could be
eliminated, such as migration, nodule formation, and foreign body reactions through the
proper combination of properties of natural and synthetic biomaterials.

5. Conclusions

As the annual number of breast reconstruction and augmentation procedures in-
creases, biomaterials for the breast have overcome multiple clinical obstacles and have
gone through an astounding evolution over the last century. Breast implants have un-
dergone a remarkable progression among various biomaterials to achieve more natural,
durable, and safe properties for patients. Current promising results in preclinical research
reveal that biointegration of the device into the soft tissue is expected to present a solution
for unsolved issues such as capsular contracture and foreign body reactions. Moreover,
tissue engineering utilizing 3D bioprinting technology will accelerate the emergence of a
perfect biomaterial for the breast. Keeping pace with the trend of patients seeking less in-
vasive procedures, safe and long-lasting injection biomaterials are also expected to emerge
in the near future.
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